
Join us at faradaysec.com

curl --user "APITest\API.User"
 "elements":[
 {
 "type":"Contact",
 "id":"1",
 "createdAt":"1403034086",
 "depth":"minimal",
 "name":"george.washington@america.com",
 "updatedAt":"1410193024",
 "emailAddress":"george.washington@america.com"

 "type":"Contact",
 "id":"2",
 "createdAt":"1403113589",
 "depth":"minimal",
 "name":"john.a.macdonald@canada.com",
 "updatedAt":"1403113589",
 "emailAddress":"john.a.macdonald@canada.com"
 },
 {
 "type":"Contact",
 "id":"2",
 "createdAt":"1403113589",
 "depth":"minimal",
 "name":"john.a.macdonald@canada.com",
 "updatedAt":"1403113589",
 "emailAddress":"john.a.macdonald@canada.com"
 }
],
{
 "type":"Contact",
 "id":"2",
 "createdAt":"1403113589",
 "depth":"minimal",
 "name":"john.a.macdonald@canada.com",
 "updatedAt":"1403113589",
 "emailAddress":"john.a.macdonald@canada.com"
 "page":1,
 "pageSize":2,
 "total":527
}
curl --user "APITest\API.User"
 "elements":[
 {
 "type":"Contact",
 "id":"1",
 "createdAt":"1403034086",
 "depth":"minimal",
 "name":"george.washington@america.com",
 "updatedAt":"1410193024",
 "emailAddress":"george.washington@america.com"

 "type":"Contact",
 "id":"2",
 "createdAt":"1403113589",
 "depth":"minimal",
 "name":"john.a.macdonald@canada.com",
 "updatedAt":"1403113589",
 "emailAddress":"john.a.macdonald@canada.com"
 },
 {
 "type":"Contact",
 "id":"2",
 "createdAt":"1403113589",
 "depth":"minimal",
 "name":"john.a.macdonald@canada.com",
 "updatedAt":"1403113589",
 "emailAddress":"john.a.macdonald@canada.com"
 }
],
{
 "type":"Contact",
 "id":"2",
 "createdAt":"1403113589",
 "depth":"minimal",
 "name":"john.a.macdonald@canada.com",
 "updatedAt":"1403113589",
 "emailAddress":"john.a.macdonald@canada.com"
 "page":1,
 "pageSize":2,
 "total":527
}

Integrating Faraday
in the software
development process

Part One

This white paper produced by our technical team, shares
important information to attack vulnerabilities from the first
stage when developing software.

Integrating Faraday in the software development process Part One 2

Faraday’s mission is to make security simple and accessible to everyone, using our

experience and passion to enable SMB/SME companies reducing their gap between

exposure and remediation.

We truly believe that a clear understanding of your security posture is the primary key

to reduce your attack surface, allowing you to make smarter decisions to protect your

most valuable assets.

Security is a world-class engineering challenge and we want to help. We are a

passionate leading team that wants to transform the way security works.

About Us

Outstanding research results published

Constant contribution to the global security community

+15 years working with F500

Speakers at the best security conferences

+60 employees worldwide

Get to know us at faradaysec.com

http://www.faradaysec.com

Integrating Faraday in the software development process Part One 3

Integrating Faraday
in the software
development process

Introduction

Usually, software companies see security as an afterthought, which can be generally

added when the product is completely operative. This approach could have been

debatable in the past. Nowadays, it’s considered a bad decision since it could

generate unexpected vulnerabilities in the released source code.

The DevOps concept gives us a new paradigm in our teams, a new role with a

developer background focused on continuous integration, combining and automating

all the development components several times a day. Automatization, deployment

and scalability are day-to-day topics in the DevOps concept. If we combine this

role and security, we can find tasks related to DevSecOps which are centered on

Sofware Development Life Cycle (SDLC). This way, we can take the good practices

of DevOps and apply them to security checks all together as a continuous process,

providing us with the same app automatization level for all the security attributes,

functional and non-functional attributes. All of these variables promote a more secure

and robust software system.

Integrating Faraday in the software development process Part One 4

Wrapping up, one of the goals is to change the security team interaction from

“approve each version of CI/CD process” to an independent system, giving them

the ability to monitor and audit the process in every stage. To do this we need to add

security mechanisms in each pipeline step, identify possibles failures and to be

able to deliver a more strong model.

In this document, we are going to explain with simple steps how to integrate our

Faraday platform to our development and deployment process. This will allow us to

detect vulnerabilities earlier in the development life cycle and how to manage them

easily, making sure they’re not included in the production environment and avoiding

external threats.

What tools and technologies are we going to use?

•	 A vulnerable app written in Python: https://github.com/midpipps/
PythonFlaskVulnerableApp

•	 GitHub Actions for the CI/CD process.

•	 Heroku will be the PaaS where we will deploy our vulnerable app.

•	 A Faraday instance accessible over the internet.

•	 Bandit to make a static code report (SAST).

•	 OWASP Zap to execute a security scan over our recently deployed
application.

We are going to use an application we know is vulnerable and has been written in

Python, in order to scan the code using Bandit. Then, we will deploy this application

in a Heroku instance and run a simple OWASP Zap scan over it. Finally, we will upload

both reports to our Faraday instance.

https://github.com/midpipps/PythonFlaskVulnerableApp
https://github.com/midpipps/PythonFlaskVulnerableApp
https://github.com/midpipps/PythonFlaskVulnerableApp

Integrating Faraday in the software development process Part One 5

1. Create a Heroku App

First of all, we need to create a Heroku application. To do this, we recommend

following the official website instructions. You can choose other similar services -like

DigitalOcean or AWS- but keep in mind that the next GitHub workflow should

 be modified.

2. Create a GitHub repository with
our vulnerable app

We need to create a GitHub repository and upload our vulnerable app there. Please

make sure that the manual deployment process with Heroku (or the service you’ve

chosen) works in your local machine. For this example, we’ve used this repository.

3. Create a GitHub Actions workflow

This is the point of this document! We need to create our GitHub workflow which will

be executed following some rules defined by us.

For this white paper, we’ve decided to run our workflow when a user executes the

push event over the master branch.

So, go to your repository and create this directory tree in the root of it: .github/

workflow . Then create a .yml file inside, in our case we created a ci.yml file.

As we said before, first we need to define our workflow name and the trigger event:

name: CI

on:
 push:
 branches:
	 - master

YML

https://www.heroku.com/
https://github.com/flopezluksenberg/faraday-vmpipelines

Integrating Faraday in the software development process Part One 6

Then, we can define the jobs of our workflow:

jobs:
 build:
 runs-on: ubuntu-latest

 scan:
 needs: [build]
 runs-on: ubuntu-latest

 upload:
 needs: [scan]
 runs-on: ubuntu-latest

We’ve defined 3 jobs: build, scan and upload, and all of them run over a ubuntu-latest

image.

GitHub Actions execute all the jobs at the same time, but for this example we need

to execute them sequentially. To do this, we use the property needs. So, the scan job

has the property needs: [build] and the upload job has the property need: [scan].

This way we can assure that they run in a sequential order.

3.1	 Defining the Build job

build:
 runs-on: ubuntu-latest

 steps:
	 - uses: actions/checkout@v1

	 - name: Use Python
 	 uses: actions/setup-python@v2
 with:
 python-version: ‘3.x’
 architecture: ‘x64’

	 - name: Install dependencies
 run: |
 python -m install --upgrade pip
 pip install -r requirements.txt

	 - name: Run Bandit (Python code analyzer)
 run: bandit -r . -f xml -o flaskapp_faraday_bandit.xml || true

	 - name: Upload Bandit Report
 uses: actions/upload-artifact@v2
 with:
 name: bandit-report
 path: flaskapp_faraday_bandit.xml

	 - name: Add Remote Origin

Integrating Faraday in the software development process Part One 7

 run: |
 git remote add heroku https://heroku:${{ secrets.HERO-
KU_API_KEY }}@git.heroku.com/${{ secrets.HEROKU_APP_NAME }}.git

	 - name: Deploy to Heroku
 run: git push heroku HEAD:master -f

The first action to execute is actions/checkout@v1. This will download our repository

in the assigned workspace by GitHub.

The next step declares a Python 3 environment and installs the repository

dependency using the file requirements.txt. This file has Bandit as dependency so

we can use it now. Then we run Bandit. This will create a report in xml format with the

name flaskapp_faraday_bandit.xml. For Faraday it’s important to pay attention to

the suffix _faraday_bandit.xml, because it will be used to recognize the plugin report

when we upload it to our Faraday instance.

Once Bandit has finished, we need to upload the generated report to GitHub using

actions/upload-artifact@v2. This action combined with actions/download-

artifact@master are the mechanisms provided by GitHub Actions to share outputs

between jobs.

The last two actions are the Heroku deployment. An important note here is that we’ve

used the variables secrets.HEROKU_API_KEY and secrets.HEROKU_APP_NAME.

Those variables can be defined in the Secrets section over the Settings tab of our

GitHub Repository:

3.2	 Defining the Scan job

By declaring these secret variables, we can avoid pushing sensitive information

directly in our workflow file.

This job will run a simple scan over our recently deployed vulnerable app.

Integrating Faraday in the software development process Part One 8

 scan:
 needs: [build]
 runs-on: ubuntu-latest

 container:
 image: owasp/zap2docker-stable
 options: --user root -v ${{ github.workspace }}:/zap/wrk/:rw

 steps:
	 - name: Run Zap Baseline Scan
 run: zap-baseline.py ${{ secrets.ZAP_SCAN_URL }} -x zap-report.xml || echo 0

	 - name: Upload Zap Report Artifact
 uses: actions/upload-artifact@v2
 with:
 name: zap-report
 path: zap-report.xml

Then, we run the scan and save the report with the name zap-report.xml. Finally, we

upload the report as we did with the Bandit report in the build job.

3.3	 Defining the Upload job

 upload:
 needs: [scan]
 runs-on: ubuntu-latest

 container:
 image: python:3.9.1
 options: --user root -v ${{ github.workspace }}:/reports:rw

 steps:

	 - name: Get current date
 id: date
 run: echo “::set-output name=date::$(date +’%Y-%m-%d’)”

	 - name: Download Zap Report Artifact
 uses: actions/download-artifact@master
 with:
 name: zap-report
 path: zap-report

	 - name: Download Bandit Report Artifact
 uses: actions/download-artifact@master
 with:
 name: bandit-report
 path: bandit-report

 	 - name: Upload Reports to Faraday

As you can see, we’ve used a dockerized version of OWASP Zap. For this reason, we

need to choose the docker image and declare some options.

Integrating Faraday in the software development process Part One 9

 run: |
 pip install faraday-cli
 faraday-cli auth -f ${{ secrets.FARADAY_HOST }} -u ${{
secrets.FARADAY_USERNAME }} -p ${{ secrets.FARADAY_PASSWORD }}
 faraday-cli create_ws ${{ github.event.repository.name }}-
${{ steps.date.outputs.date }}-${{ github.run_number }}
 faraday-cli process_report -w ${{ github.event.repository.
name }}-${{ steps.date.outputs.date }}-${{ github.run_number }} /
reports/bandit-report/flaskapp_faraday_bandit.xml
 faraday-cli process_report -w ${{ github.event.repository.name }}-${{ steps.
date.outputs.date }}-${{ github.run_number }} /reports/zap-report/zap_report.xml

In this job, we are going to upload both generated reports to our Faraday instance.

To do this, we need to use the library faraday-cli that can be installed easily using

pip command.

So, we defined the Upload job to work inside a docker image with Python 3 in order to

allow us to install faraday-cli easily later.

Then we generated a variable saving the current date with the format YYYY-mm-dd.

This variable will be used for the workspace name in our Faraday instance.

Now, we need to download both reports generated in the previously executed jobs

using the actions/download-artifact@master action.

Lastly, we need to install faraday-cli and then perform an authentication, create a

workspace and process our reports. This last step uses the other declared variables

in the Secrets section (previously mentioned) and uses some GitHub context

variables too.

The workspace name format will be <repository-name>-<date>-<github-running-

number>, so for example it can be: faraday-pipelines-2020-11-03-68.

Important Note: Faraday has GitHub Custom Action available which allows you to

process the reports too. However, this is not mandatory. In case you want to use this

custom action, the Upload Job should be defined as follows:

 upload:
 needs: [scan]
 runs-on: ubuntu-latest

 steps:

	 - name: Get current date
 id: date
 run: echo “::set-output name=date::$(date +’%Y-%m-%d’)”

	 - name: Download Zap Report Artifact
 uses: actions/download-artifact@master
 with:
 name: zap-report
 path: zap-report

Integrating Faraday in the software development process Part One 10

	 - name: Download Bandit Report Artifact
 uses: actions/download-artifact@master
 with:
 name: bandit-report
 path: bandit-report

	 - name: Upload Reports to Faraday
 uses: infobyte/gha-faraday-report-uploader@main
 with:
 host: ${{ secrets.FARADAY_HOST }}
 username: ${{ secrets.FARADAY_USERNAME }}
 password: ${{ secrets.FARADAY_PASSWORD }}
 workspace: ${{ github.event.repository.name }}-
${{ steps.date.output.date }}-${{ github.run_number }}
 files: bandit-report/flaskapp_faraday_bandit.xml zap-report/zap-report.xml

After commiting and pushing the changes with our brand new ci.yml file, we can see

the running result clicking on the tab Actions of our GitHub Repository.

If you want, you can download the raw reports generated by Bandit and OWASP Zap

(they’re attached to the action result when you use the actions/upload-artifact@v2).

Now, if you look into your Faraday instance, you should see your new workspace

created in the previous GitHub Action running this way:

Integrating Faraday in the software development process Part One 11

As you can see, several vulns were found. These vulnerabilities can be easily

managed as usual with Faraday, as shown in the following status report image:

Finally, you can see the dashboard workspace:

Integrating Faraday in the software development process Part One 12

Conclusions
Now you know how to easily integrate Faraday with our CD/CI feature using

a few tools.

As mentioned in the introduction, keeping our apps integrated with Faraday

will allow us to ease the security team’s work in the company, allowing us

to detect earlier security bugs that could be released in the production

version. All of this by just adding simple middle steps in the CI/CD process.

This example has been created focusing on GitHub Actions, but can be

extended for other CI/CD tools like Travis CI, Jenkins, Bitbucket Pipelines,

among others.

Last but not least, for this example we used only two reports, but you can

use all the scanners you’d like because Faraday is compatible with a large

list of reports. The only limit is your imagination!

App Vuln Management: Integrating Faraday

in the software development process

What is DevSecOps?

Vulnerability Management

Example used repo + Script import_scan.py

GitHub Actions Documentation

Faraday plugin’s list

OWASP Zap official website

Bandit official website

How to deploy a Python’s application in Heroku

How to deploy a flask application in heroku using GitHub Actions

Vulnerable application used in this example

GitHub Action: Faraday Uploader

Useful links

https://support.faradaysec.com/portal/en/kb/articles/plugins#:~:text=There%20are%20three%20kinds%20of,(also%20called%20Online).
https://support.faradaysec.com/portal/en/kb/articles/plugins#:~:text=There%20are%20three%20kinds%20of,(also%20called%20Online).
https://faradaysec.com/integrating-faraday/
https://faradaysec.com/integrating-faraday/
https://www.csoonline.com/article/3245748/what-is-devsecops-developing-more-secure-applications.html
https://en.wikipedia.org/wiki/Vulnerability_management
https://github.com/infobyte/faraday-vmpipelines
https://docs.github.com/en/free-pro-team@latest/actions
https://github.com/infobyte/faraday/wiki/Plugin-List
https://www.zaproxy.org/
https://bandit.readthedocs.io/en/latest/
https://devcenter.heroku.com/articles/getting-started-with-python
https://dev.to/heroku/deploying-to-heroku-from-github-actions-29ej
https://github.com/midpipps/PythonFlaskVulnerableApp
https://github.com/infobyte/gha-faraday-report-uploader

